

Enrollment No. EN21 C.S. 303029

Faculty of Engineering

Mid SemI Examination September -2022

IT3BS06/CS3BS06 Discrete Mathematics

Programme:	B.Tech.		
Duration: 2	Hrs.		

Branch/Specialisation: CSE/ IT

Maximum Marks: 40

			1
Q.1	i.	If a function $f: A \rightarrow B$ is one one but not onto then	
		a) $ A < B $ b) $ A = B $	
		c) $ A > B $ d) none of these	1
	ii.	If $A=\{1,2,3,4\}$ and a relation defined from A to A such that $R=\{(a,b): a=\sqrt{b}\}$	•
		then $Dom R^{-1}$ is	
		a) {1,3,4} b) {1,4} c) {1,2} d) {3,4}	1
	iii.	Which of the following is power set of $A = \{a,b,\emptyset\}$	1
		a) $P(A) = \{ \emptyset, \{a\}, \{b\} \}$	
		b) $P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b,\emptyset\}\}\$	
		c)P(A)= $\{\emptyset, \{\emptyset\}, \{a\}, \{b\}, \{a,b\}, \{b,\emptyset\}, \{a,\emptyset\}, \{a,b,\emptyset\}\}\}$	
		$d)P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{b,\emptyset,\} \{a,\emptyset\}, \{a,b,\emptyset\}\}\}$	
	iv.	If $f(x) = x^3 - 3x$ and $g(x) = 3x - x^3$ then $f \circ g(x)$ is	1
		a) $(3x - x^3)^3$	
		b) $3x - x^3$	
		c) $(3x - x^3) - 3(3x)$	
		d) $(3x - x^3)^3 - 9x + 3x^3$	
	V.	If $A = \{1,2,3,4\}$ and $B = \{1,2,3,4,5\}$ then $ A \times B $ is	1
		a) 12 b) 2^{20} c) 20 d) 20^2	
	vi.	If R be a partial order relation in set A then which of the following is	1
		incorrect	
		a) R is reflexive	
		b) R is symmetric	
		c) R is anti symmetric	
		d) R is transitive	
	vii.	In Boolean algebra for $a,b \in B$ which of the following is correct	
		a) $a+a'.b=(a+b)'$ b) $a+a'.b=a+b$	
		c) $a+a'.b = a$ d) $a+a'.b = 0$	
	viii.	In Boolean algebra for $a \in B$	
		a) $(a')'=a'$ b) $(a')'=a$	
		c) $(a')'=a''$ d) None of these	

	ix.	A set P with partial ordered relation R is called a) POSET	1
		b) TOSET	
		c) Comparable set	
		d) None of thee	
	х.	If (P, \leq) be a partial ordered set (POSET). An element m in P is said to be	1
		maximal element if	
		a) $m \ge x \Rightarrow m = x (\text{for any } x \in P)$	
		b) $m \le x \Rightarrow m = x (for any x \in P)$	
		c) m / $x \forall x \in P$	
		d) None of these	
Q.2	i.	Show that if 45 dictionaries in a college library contain a total of 92537 pages each, then one of the dictionaries must contain at least 2057 pages	2
	ii.	If A and B are two sets, prove that $A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$	3
	iii.	In a class of 100 students, 39 play tennis, 58 play cricket, 32 play hockey, 10	5
		play hockey and cricket, 11 play hockey and tennis, 13 play tennis and	
		cricket, using principle of inclusion and exclusion find how many students	
		play	
		a) All three games	
	0	b) Just play one game.	
OR	(fv)	A function f: N \rightarrow N defined by $f(x) = x^3$ then check f is one one or not	5
Q.3	i.	Define maximal and minimal elements of POSET.	2
	(ii)	Let I be the set of positive integers prove that the relation \leq (less than or	3
		equal to) is partial ordered relation.	
	(ii).	Using Boolean algebra (B, +, , , ') prove that given statements are equivalent	5
		a) a.b' = 0	
		b) $a' + b = 1$.	
OR	iv.	Let S be a set of family of all sets which is closed under the operation union	5
		"U" and intersection " \cap " and complementary law then prove $(S, \cup, \cap, ')$ is	
		Boolean algebra.	
Q.4	i.	State Pigeonhole Principle.	2
Χ	ii.	Define Equivalence Relation.	2 3
	iii.	Using Boolean algebra $(B, +, ., ')$ prove that $(a+b).(a'+b)=(a \not b)+(a'.b)$	5
		$\forall a, b \in B$	
OR	iv.	If A={1,2,3} and P(A) is power set of set A and relation of inclusion (A is	5
		subset of B) is defined in P(A)then find maximal and minimal elements of	
		P(A)	
